Crazy Tan
This is a method of integration that is very unorthodox, but it is very useful in certain situations.
Methods
Example
So, basically, you just substitute trig functions into expressions in terms of u.
$$\int{\dfrac{1}{1-\sin(x)}\sqrt{\dfrac{\cos(x)}{1 + \cos(x) + \sin(x)}}dx}$$
$$\int{\dfrac{1}{1 - \frac{2u}{1 + u^2}}\sqrt{\dfrac{\frac{1-u^2}{1 + u^2}}{1 + \frac{2u}{1 + u^2} + \frac{1 - u^2}{1 + u^2}}}\dfrac{2}{1 + u^2}}du$$
$$2\int{\dfrac{1}{(u-1)^2}\sqrt{\dfrac{1-u^2}{1 + u^2 + 2u + 1 - u^2}}du}$$
$$2\int{\dfrac{1}{(u-1)^2}\sqrt{\dfrac{(1-u)(1+u)}{2(u+1)}}du}$$
$$\sqrt{2}\int{\dfrac{1}{(1-u)^2}\sqrt{1-u} du}$$
$$\sqrt{2}\int{(1-u)^{-3/2} du}$$
$$-\dfrac{2\sqrt{2}}{\sqrt{1-u}} + C$$
$$-\dfrac{2\sqrt{2}}{\sqrt{1-\tan(\frac{x}{2})}} + C$$
$$\int\mathrm{\csc(x)}\, \mathrm{d}x$$
$$\int{\dfrac{1}{\sin(x)}}\, \mathrm{d}x$$
$$\int{\dfrac{1}{\frac{2u}{1 + u^2}}\dfrac{2}{1 + u^2}}\, \mathrm{d}u$$
$$\int{\dfrac{1}{u}}\, \mathrm{d}u$$
$$=\ln(\tan(\frac{x}{2})) + C$$
David Witten