Extended Mean Value Theorem
The Extended Mean Value Theorem says that if f and g are differentiable on (a,b) there exists a point c $\in$ (a,b) s.t.
$\frac{f'(c)}{g'(c)} = \frac{f(b) - f(a)}{g(b) - g(a)}$
Recall the regular mean value theorem, with $g(x) = x$:
$\frac{f'(c)}{x'} = \frac{f(b) - f(a)}{b - a}$
$x' = 1$, so $f'(c) = \frac{f(b) - f(a)}{b - a}$
L'Hôpital's Rule
$\text{Let's say you have} \lim_{x \to c}{\frac{f(x)}{g(x)}\text{ , and that evaluates to} \frac{0}{0}, \frac{\infty}{\infty}, \frac{-\infty}{\infty}, \frac{\infty}{-\infty}, \text{ or } \frac{-\infty}{-\infty}}$
$\text{That is equivalent to }\lim_{x \to c}{\frac{f'(x)}{g'(x)}}$
$\text{That is equivalent to }\lim_{x \to c}{\frac{f'(x)}{g'(x)}}$
Example (0/0)
$$\lim_{x \to 0}{\frac{e^{2x} - 1}{x}} = \frac{0}{0}$$
$$\lim_{x \to 0}{\frac{2e^{2x}}{1}} = 2$$
Example (∞/∞)
$$\lim_{x\to \infty}{\frac{\ln{x}}{x}} = \frac{\infty}{\infty}$$
$$\lim_{x\to \infty}{\frac{1}{x}} = 0$$
Example (∞ - ∞)
$$\lim_{x \to 1}{\frac{1}{\ln{x}} - \frac{1}{x-1}}$$
$$=\lim_{x \to 1}{\frac{x - 1 - \ln{x}}{(x-1)\ln{x}}}$$
$$=\lim_{x \to 1}{\frac{1 - \frac{1}{x}}{\ln{x} + \frac{x-1}{x}}}$$
$$(\frac{x-1}{x} = 1 - \frac{1}{x})$$
$$\lim_{x \to 1}{\frac{\frac{1}{x^2}}{\frac{1}{x} + \frac{1}{x^2}}}$$
$$=\lim_{x \to 1}{\frac{1}{1 + 1}} = \frac{1}{2}$$
Example (0^0)
$$y = \lim_{x \to 0}{\sin^x{x}}$$
$$\ln{y} = \ln{\lim_{x \to 0}{sin^x{x}}}$$
$$\ln{y} = \lim_{x \to 0}{\ln{sin^x{x}}}$$
$$\ln{y} = \lim_{x \to 0}{x\ln{sin{x}}}$$
$$\ln{y} = \lim_{x \to 0}{\frac{\ln{sin{x}}}{\frac{1}{x}}}$$
$$\text{L'H: }\ln{y} = \lim_{x \to 0}{-\cot{(x)}x^2}$$
$$\ln{y} = \lim_{x \to 0}{-\frac{x^2}{\tan{x}}}$$
$$\ln{y} = \lim_{x \to 0}{-\frac{2x}{\sec^2{x}}}$$
$$\ln{y} = \lim_{x \to 0}{-2x\cos^2{x}}$$
$$\ln{y} = 0$$
$$y = 1$$
Example (∞^0)
$$y = \lim_{x \to \infty}{x^{\frac{1}{x}}}$$
$$\text{Now, do the same thing as } 0^0 \text{, take the natural log}$$
$$\ln{y} = \lim_{x \to \infty}{\ln{(x^{\frac{1}{x}}})}$$
$$\ln{y} = \lim_{x \to \infty}{\frac{\ln{(x)}}{x}}$$
$$\ln{y} = \lim{\frac{\frac{1}{x}}{1}}$$
$$\ln{y} = 0$$
$$y = 1$$
David Witten